Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 10 de 10
1.
Adv Mater ; 36(1): e2308631, 2024 Jan.
Article En | MEDLINE | ID: mdl-37953518

A subclass of organic semiconductors known as conjugated polyelectrolytes (CPEs) is characterized by a conjugated backbone with ionic pendant groups. The water solubility of CPEs typically hinders applications of thin films in aqueous media. Herein, it is reported that films of an anionic CPE, namely CPE-K, drop cast from water produces single-component solid-state pseudocapacitive electrodes that are insoluble in aqueous electrolyte. That X-ray diffraction experiments reveal a more structurally ordered film, relative to the as-obtained powder from chemical synthesis, and dynamic light scattering measurements show an increase in aggregate particle size with increasing [KCl] indicate that CPE-K films are insoluble because of tight interchain contacts and electrostatic screening by the electrolyte. CPE-K film electrodes can maintain 85% of their original capacitance (84 F g-1 ) at 500 A g-1 and exhibit excellent cycling stability, where a capacitance retention of 93% after 100 000 cycles at a current density of 35 A g-1 . These findings demonstrate that it is possible to use initially water soluble ionic-organic materials in aqueous electrolytes, by increasing the electrolyte concentration. This strategy can be applied to the application of conjugated polyelectrolytes in batteries, organic electrochemical transistors, and electrochemical sensors, where fast electron and ion transport are required.

2.
Article En | MEDLINE | ID: mdl-38150629

In alignment with widespread interest in carbon neutralization and sustainable practices, we disclose that conjugated polyelectrolyte (CPE) hydrogels are a type of recyclable, electrochemically stable, and environmentally friendly pseudocapacitive material for energy storage applications. By leveraging ionic-electronic coupling in a relatively fluid medium, one finds that hydrogels prepared using a fresh batch of an anionic CPE, namely, Pris-CPE-K, exhibit a specific capacitance of 32.6 ± 6.6 F g-1 in 2 M NaCl and are capable of 80% (26.1 ± 6.5 F g-1) capacitance retention after 100,000 galvanostatic charge-discharge (GCD) cycles at a current density (J) of 10 A g-1. We note that equilibration under a constant potential prior to GCD analysis leads to the K+ counterions in the CPE exchanging with Na+ and, thus, the relevant active material Pris-CPE-Na. It is possible to remove the CPE material from the electrochemical cell via extraction with water and to carry out a simple purification through dialysis to produce a recycled material, namely Re-CPE-Na. The recycling workup has no significant detrimental impact on the electrochemical performance. Specifically, Re-CPE-Na hydrogels display an initial specific capacitance of 26.3 ± 1.2 F g-1 (at 10 A g-1) and retain 77% of the capacitance after a subsequent 100,000 GCD cycles. Characterization by NMR, FTIR, and Raman spectroscopies, together with XPS and GPC measurements, revealed no change in the structure of the backbone or side chains. However, rheological measurements gave evidence of a slight loss in G' and G''. Overall, that CPE hydrogels display recyclability argues in favor of considering them as a novel materials platform for energy storage applications within an economically viable circular recycling strategy.

3.
Angew Chem Int Ed Engl ; 62(33): e202305189, 2023 08 14.
Article En | MEDLINE | ID: mdl-37222113

Interfacing bacteria as biocatalysts with an electrode provides the basis for emerging bioelectrochemical systems that enable sustainable energy interconversion between electrical and chemical energy. Electron transfer rates at the abiotic-biotic interface are, however, often limited by poor electrical contacts and the intrinsically insulating cell membranes. Herein, we report the first example of an n-type redox-active conjugated oligoelectrolyte, namely COE-NDI, which spontaneously intercalates into cell membranes and mimics the function of endogenous transmembrane electron transport proteins. The incorporation of COE-NDI into Shewanella oneidensis MR-1 cells amplifies current uptake from the electrode by 4-fold, resulting in the enhanced bio-electroreduction of fumarate to succinate. Moreover, COE-NDI can serve as a "protein prosthetic" to rescue current uptake in non-electrogenic knockout mutants.


Bioelectric Energy Sources , Shewanella , Electron Transport/physiology , Electrons , Oxidation-Reduction , Electricity , Membrane Transport Proteins/metabolism , Shewanella/metabolism , Electrodes , Bioelectric Energy Sources/microbiology
4.
Adv Mater ; 34(37): e2203480, 2022 Sep.
Article En | MEDLINE | ID: mdl-35835449

Microbial electrosynthesis-using renewable electricity to stimulate microbial metabolism-holds the promise of sustainable chemical production. A key limitation hindering performance is slow electron-transfer rates at biotic-abiotic interfaces. Here a new n-type conjugated polyelectrolyte is rationally designed and synthesized and its use is demonstrated as a soft conductive material to encapsulate electroactive bacteria Shewanella oneidensis MR-1. The self-assembled 3D living biocomposite amplifies current uptake from the electrode ≈674-fold over controls with the same initial number of cells, thereby enabling continuous synthesis of succinate from fumarate. Such functionality is a result of the increased number of bacterial cells having intimate electronic communication with the electrode and a higher current uptake per cell. This is underpinned by the molecular design of the polymer to have an n-dopable conjugated backbone for facile reduction by the electrode and zwitterionic side chains for compatibility with aqueous media. Moreover, direct arylation polycondensation is employed instead of the traditional Stille polymerization to avoid non-biocompatible tin by-products. By demonstrating synergy between living cells with n-type organic semiconductor materials, these results provide new strategies for improving the performance of bioelectrosynthesis technologies.


Bioelectric Energy Sources , Electrons , Bioelectric Energy Sources/microbiology , Electricity , Electrodes , Electron Transport , Polyelectrolytes
5.
Macromol Rapid Commun ; 43(16): e2100840, 2022 Aug.
Article En | MEDLINE | ID: mdl-35075724

Successful practical implementation of bioelectrochemical systems (BES) requires developing affordable electrode structures that promote efficient electrical communication with microbes. Recent efforts have centered on immobilizing bacteria with organic semiconducting polymers on electrodes via electrochemical methods. This approach creates a fixed biocomposite that takes advantage of the increased electrode's electroactive surface area (EASA). Here, it is demonstrated that a biocomposite comprising the water-soluble conjugated polyelectrolyte CPE-K and electrogenic Shewanella oneidensis MR-1 can self-assemble with carbon paper electrodes, thereby increasing its biocurrent extraction by ≈6-fold over control biofilms. A ≈1.5-fold increment in biocurrent extraction is obtained for the biocomposite on carbon paper relative to the biocurrent extracted from gold-coated counterparts. Electrochemical characterization revealed that the biocomposite stabilized with the carbon paper more quickly than atop flat gold electrodes. Cross-sectional images show that the biocomposite infiltrates inhomogeneously into the porous carbon structure. Despite an incomplete penetration, the biocomposite can take advantage of the large EASA of the electrode via long-range electron transport. These results show that previous success on gold electrode platforms can be improved when using more commercially viable and easily manipulated electrode materials.


Bioelectric Energy Sources , Bioelectric Energy Sources/microbiology , Biofilms , Carbon/chemistry , Electrodes , Electron Transport , Gold/chemistry , Polyelectrolytes
6.
Chem Rev ; 122(4): 4791-4825, 2022 02 23.
Article En | MEDLINE | ID: mdl-34714064

Microbial bioelectronics require interfacing microorganisms with electrodes. The resulting abiotic/biotic platforms provide the basis of a range of technologies, including energy conversion and diagnostic assays. Organic semiconductors (OSCs) provide a unique strategy to modulate the interfaces between microbial systems and external electrodes, thereby improving the performance of these incipient technologies. In this review, we explore recent progress in the field on how OSCs, and related materials capable of charge transport, are being used within the context of microbial systems, and more specifically bacteria. We begin by examining the electrochemical communication modes in bacteria and the biological basis for charge transport. Different types of synthetic organic materials that have been designed and synthesized for interfacing and interrogating bacteria are discussed next, followed by the most commonly used characterization techniques for evaluating transport in microbial, synthetic, and hybrid systems. A range of applications is subsequently examined, including biological sensors and energy conversion systems. The review concludes by summarizing what has been accomplished so far and suggests future design approaches for OSC bioelectronics materials and technologies that hybridize characteristic properties of microbial and OSC systems.


Bacteria , Semiconductors , Electrodes
7.
Adv Mater ; 32(24): e1908178, 2020 Jun.
Article En | MEDLINE | ID: mdl-32347632

Composites, in which two or more material elements are combined to provide properties unattainable by single components, have a historical record dating to ancient times. Few include a living microbial community as a key design element. A logical basis for enabling bioelectronic composites stems from the phenomenon that certain microorganisms transfer electrons to external surfaces, such as an electrode. A bioelectronic composite that allows cells to be addressed beyond the confines of an electrode surface can impact bioelectrochemical technologies, including microbial fuel cells for power production and bioelectrosynthesis platforms where microbes produce desired chemicals. It is shown that the conjugated polyelectrolyte CPE-K functions as a conductive matrix to electronically connect a three-dimensional network of Shewanella oneidensis MR-1 to a gold electrode, thereby increasing biocurrent ≈150-fold over control biofilms. These biocomposites spontaneously assemble from solution into an intricate arrangement of cells within a conductive polymer matrix. While increased biocurrent is due to more cells in communication with the electrode, the current extracted per cell is also enhanced, indicating efficient long-range electron transport. Further, the biocomposites show almost an order-of-magnitude lower charge transfer resistance than CPE-K alone, supporting the idea that the electroactive bacteria and the conjugated polyelectrolyte work synergistically toward an effective bioelectronic composite.


Biotechnology , Biofilms , Electrochemistry , Electrodes , Electron Transport , Gold/chemistry , Shewanella/chemistry , Shewanella/metabolism , Shewanella/physiology
8.
Biosens Bioelectron ; 144: 111630, 2019 Nov 01.
Article En | MEDLINE | ID: mdl-31505403

Bioelectrochemical systems (BESs) are emerging as a platform technology with great application potentials such as wastewater remediation and power generation. Materials for electrode/microorganism modification are being examined in order to improve the current production in BESs. Herein, we report that the current production increased almost one fold in single-chamber BES reactors, by adding a conjugated polyelectrolyte (CPE-K) in the growth medium to co-form the anodic biofilm with Geobacter sulfurreducens cells. The CPE-K treated BESs had a maximum current density as high as 12.3 ±â€¯0.5 A/m2, with that of the controls being 6.2 ±â€¯0.7 A/m2. Improved current production was sustained even after CPE-K was no longer added to the medium. It was demonstrated that increased current resulted from improvement of certain biofilm properties. Analysis using electrochemical impedance spectroscopy (EIS) showed that CPE-K addition decreased the charge transfer resistance at the cell/electrode interface and the diffusion resistance through the biofilm. Protein quantification showed increased biomass growth on the electrode surface, and confocal scanning microscopy images revealed enhanced biofilm permeability. These results demonstrated for the first time that conjugated polyelectrolytes could be used for G. sulfurreducens biofilm augmentation to achieve high electricity production through tuning the anodic biofilm in BESs.


Biofilms/growth & development , Biosensing Techniques , Electrochemical Techniques , Geobacter/growth & development , Biomass , Dielectric Spectroscopy , Geobacter/drug effects , Polyelectrolytes/chemistry , Polyelectrolytes/pharmacology , Surface Properties
9.
Adv Biosyst ; 3(2): e1800303, 2019 02.
Article En | MEDLINE | ID: mdl-32627367

Synthetic systems that facilitate electron transport across cellular membranes are of interest in bio-electrochemical technologies such as bio-electrosynthesis, waste water remediation, and microbial fuel cells. The design of second generation redox-active conjugated oligoelectrolytes (COEs) bearing terminal cationic groups and a π-delocalized core capped by two ferrocene units is reported. The two COEs, DVFBO and F4 -DVFBO, have similar membrane affinity, but fluorination of the core results in a higher oxidation potential (422 ± 5 mV compared to 365 ± 4 mV vs Ag/AgCl for the neutral precursors in chloroform). Concentration-dependent aggregation is suggested by zeta potential measurements and confirmed by cryogenic transmission electron microscopy. When the working electrode potential (ECA ) is poised below the oxidation potential of the COEs (ECA = 200 mV) in three-electrode electrochemical cells containing Shewanella oneidensis MR-1, addition of DVFBO and F4 -DVFBO produces negligible biocurrent enhancement over controls. At ECA = 365 mV, DVFBO increases steady-state biocurrent by 67 ± 12% relative to controls, while the increase with F4 -DVFBO is 30 ± 5%. Cyclic voltammetry supports that DVFBO increases catalytic biocurrent and that F4 -DVFBO has less impact, consistent with their oxidation potentials. Overall, electron transfer from microbial species is modulated via tailoring of the COE redox properties.


Electron Transport/physiology , Electrons , Ferrous Compounds/chemistry , Metallocenes/chemistry , Synthetic Biology/methods , Bioelectric Energy Sources , Cell Membrane/chemistry , Cell Membrane/metabolism , Electrodes , Electrolytes/chemistry , Oxidation-Reduction , Shewanella/chemistry , Shewanella/metabolism
10.
Angew Chem Int Ed Engl ; 56(23): 6519-6522, 2017 06 01.
Article En | MEDLINE | ID: mdl-28444923

We probe anaerobic respiration of bacteria in the presence of conjugated polyelectrolytes (CPEs). Three different CPEs were used to probe how structural variations impact biocurrent generation from Shewanella oneidensis MR-1. For the self-doped anionic CPE only, absorption spectroscopy shows that the addition of S. oneidensis MR-1 leads to the disappearance of the polaron (radical cation) band at >900 nm and an increase in the band at 735 nm due to the neutral species, consistent with electron transfer from microbe to polymer. Microbial three-electrode electrochemical cells (M3Cs) show an increase in the current generated by S. oneidensis MR-1 with addition of the self-doped CPE relative to other CPEs and controls. These experiments combined with in situ cyclic voltammetry suggest that the doped CPE facilitates electron transport to electrodes and reveal structure-function relationships relevant to developing materials for biotic/abiotic interfaces.


Anaerobiosis , Polyelectrolytes/chemistry , Shewanella/metabolism , Electrodes , Electron Transport , Microscopy, Electron, Scanning , Molecular Structure , Shewanella/ultrastructure
...